
Improving Ranking Correlation of Supernet with Candidates Enhancement and
Progressive Training

Ziwei Yang1, Ruyi Zhang1, Zhi Yang1, Xubo Yang1, Lei Wang3 and Zheyang Li1,2

1Hikvision Research Institute, 2Zhejiang University
3University of Science and Technology of China

{yangziwei5,zhangruyi5,yangzhi13,yangxubo,lizheyang}@hikvision.com
wangl26@mail.ustc.edu.cn

Abstract

One-shot neural architecture search (NAS) applies
weight-sharing supernet to reduce the unaffordable compu-
tation overhead of automated architecture designing. How-
ever, the weight-sharing technique worsens the ranking con-
sistency of performance due to the interferences between
different candidate networks. To address this issue, we
propose a candidates enhancement method and progressive
training pipeline to improve the ranking correlation of su-
pernet. Specifically, we carefully redesign the sub-networks
in the supernet and map the original supernet to a new one
of high capacity. In addition, we gradually add narrow
branches of supernet to reduce the degree of weight shar-
ing which effectively alleviates the mutual interference be-
tween sub-networks. Finally, our method ranks 1st place
in the Supernet Track of CVPR2021 1st Lightweight NAS
Challenge.

1. Introduction

Neural architecture search aims to automatically design
neural architectures. Although the architectures found by
NAS methods [1, 3, 8] outperform human designed ones in
many computer vision tasks, the previous methods [2, 7] re-
quire evaluting an enormous amount of candidate architec-
tures with stand-alone training. The unaffordable compu-
tation overhead of the evaluation leads to a weight-sharing
strategy of NAS[3, 5].

As one of the widely-used weight-sharing methods, one-
shot NAS utilizes a supernet subsuming all candidate archi-
tectures within the search space to evaluate accuracies on
the validation dataset. Instead of stand-alone training, all
architectures directly inherit their weights from the super-
net which is only trained once. The computation cost of
evaluation for architectures is effectively reduced.

To train supernet, NAS methods [4, 5] sample one or a

few sub-networks from supernet and train them in each up-
date step. Due to the weight-sharing fashion, sub-networks
interfere with each other and exhibit inferior accuracies
compared with strand-alone training. The accuracy rank-
ing of sub-networks evaluated by the weights inheriting is
inconsistence with the accuracy ranking of sub-networks
when they are trained from scratch independently[1, 3].

For this issue, recent NAS methods attempt to improve
the ranking correlation of supernet from two perspectives:
optimizing the training process of supernet and enhancing
the capacity of supernet by sub-network redesigning. Fair-
NAS [4] employs a fair sampling strategy of sub-networks
to increase the training accuracy. OFA [1] narrows the
accuracy gap of sub-networks between supernet evaluat-
ing and stand-alone training by knowledge distilling. Al-
though these methods can improve the ranking correlation
of supernet in regular search spaces, it is difficult for train-
ing an irregular search space which contains searchable op-
tions with extreme conflicts, such as channel options 4 and
64. Furthermore, SCARLET-NAS[3] adds extra weights
to improve the capacity of supernet for better convergence
and less interferences between sub-networks. Laube et
al.[6] trains the sub-networks independently by adding bias
weights and splitting path weights. These methods alleviate
the disturbances of sub-networks, but the additional weights
need carefully designs and hyper-parameters tuning.

In this paper, we apply candidates enhancing and pro-
gressive training pipeline to improve the ranking consis-
tency of candidate architectures evaluated via supernet and
stand-alone training. We find some sub-networks in the
supernet exhibit inferior accuracies in the joint optimiza-
tion of all sub-networks. It contributes to the degrada-
tion of ranking correlation between supernet evaluating and
stand-alone training. To tackle this problem, we convert
the sub-networks to the ones of higher capacity, which only
adds few weights but easy to train without extra hyper-
parameters tuning. Besides, we utilize a progressive train-

1

Figure 1. The framework of our method. The left part displays the candidates enhancement of supernet. The “blue” option is enhanced by
channel proxy and activation conversion. The corresponding sub-networks are strengthened. The right part takes weights of one layer as
example to show the progressive training of supernet. The weights are duplicated step by step for further finetuning

ing method to alleviate the interference of sub-networks.
For easily launching the training process, we firstly train
the supernet by a variant of [1]. Then we gradually append
narrow branches of each searchable layer and finetune the
weights. The performance of our approach is certified in the
Supernet Track of CVPR2021 1st Lightweight NAS Chal-
lenge and ranks the 1st place.

2. Method
2.1. Supernet Training with Distilling

We firstly introduce the algorithm of supernet training
with knowledge distilling in our method. The search space
is denoted as S with weights θ. It contains sub-networks
{si} , i ∈ [1, N]. N is the number of all sub-networks in
the supernet. sN represents the largest sub-network with
maximum channels.

Supernet training with knowledge distilling can be for-
malized as

θ∗ = arg min
θ

Esi∼Γ(S) [L (si, sN , θ)] (1)

where θ∗ denotes the optimized weights of supernet. L is
the optimization function. Γ(S) is a sampling distribution
of si ∈ S.

We utilize cross entropy (CE) loss as a common opti-
mization function for image classification task. Then, Kull-
back–Leibler (KL) divergence loss is additionally applied
for distilling sub-networks with the largest one. The com-
plete optimization function is defined as follows:

L = (1− α)LCE (N (si, θ))

+ αLKL (N (si, θ) ,N (sN , θ)) ,
(2)

where LCE and LKL denote the cross entropy loss and
Kullback–Leibler divergence loss respectively. N (si, θ)
represents the sub-network with architecture si and inher-
ited weights from θ. α is a coefficient which trades off clas-
sification loss and distillation loss. The training algorithm
is illustrated in Algorithm 1.

Search Space. The search space is builded based on the
ResNet20 backbone. The numbers of channels in each layer
are searchable. The candidate channel options of layers are
as follows:

• layers 1 to 7: [4, 8, 12, 16].

• layers 8 to 13: [4, 8, 12, 16, 20, 24, 28, 32].

• layers 14 to 19: [4, 8, 12, 16, 20, 24, 28, 32, 36, 40,
44, 48, 52, 56,60, 64].

There are around 7.21 ∗ 1016 sub-networks in total.

2.2. Candidate Enhancing

In order to alleviate the interference between sub-
networks in the supernet, we redesign the sub-networks for
capacity enhancing. We define a mapping function R to
execute the transformation si → R(si).

In this paper, we redesign the sub-networks with two
types of modification: activation conversion and options
enhancement. The left part of Figure 1 shows details of

2

the modification. Firstly, we argue that the activation func-
tion “ReLU” is harmful for the small channels, which will
filter too much information while the channels are only
4 or 8. We change the activation function to “PReLU”
which is more smooth. In addition, the sub-networks in
our search space within numerous channel options of 4 or
8 exhibit much lower accuracy in the supernet compared
with stand-alone training. This inspires us to enhance the
capacity of channel options 4 and 8. We employ channel
options 5 and 9 as proxies of options 4 and 8 respectively,
which contribute to similar accuracy when they are trained
stand alone. With the modifications, the accuracies of sub-
networks are effectively increased and it makes a better ac-
curacy ranking of sub-networks in the supernet.

2.3. Progressive Training

In the first stage of supernet training, we only maintain
one copy of weights for different options in each layer as
[1] does and train the supernet by Algorithm 1. Although
this benefits the training of small sub-networks in the be-
ginning, the mutual interference of sub-networks becomes
more intense since the complete weight sharing.

Therefore, we insert extra counterparts of weights for
each layer and allocate them to different searchable op-
tions, which leads the original supernet to a multi-branch
one. The transformation and training of supernet are im-
plemented step by step for elaborately supernet finetuning.
To be specific, we duplicate the weights of layers in the su-
pernet based on the pretrained weights of previous training
stage. The options of layers are divided into two parts and
inherit different counterparts of the weights, which is exhib-
ited in the right part of Figure 1. Then, we add more copy
of weights for each layer and gradually reduce the number
of options that share the same counterpart of weights. With
progressive training, sub-networks in the supernet can be
elaborately finetuned, which leads to further improved ac-
curacy with pretrained weights.

3. Experiments
We evaluate our method in the Supernet Track of

CVPR2021 1st Lightweight NAS Challenge. We firstly train
the largest sub-network for 300 epoches with batch size 128
and apply a stochastic gradient descent optimizer with a
momentum of 0.9. The learning rate is decreased from an
initial value of 0.1 to 0 with a cosine learning rate decay
strategy. The weights are regularized with weight decay of
5e − 4. The data augmentation includes transformation of
brightness and contrast, rotation of 15 degrees and random
flipping. We implement the progressive training with the
same hyper-parameters of training as largest sub-network
except a different learning rate.

Metrics. We follow the setting of CVPR2021 challenge
and evaluate the ranking performance of supernet with the

Algorithm 1 Supernet Training
Input: supernet S with weights θ, trainging set Dtrain,
sampling number of sub-networks K, training iterations T ,
loss function L.
Output: optimized supernet weights θ∗.

1: random initialize θ,
2: train largest sub-network of supernet with LCE .
3: for t← 1, T do
4: set gradients of all weights to zeros;
5: forward largest sub-network sN ;
6: calculate gradients based on LCE .
7: for i← 1,K do
8: Sample sub-network si by uniform sampling;
9: forward sub-network si;

10: distill the outputs of si with the outputs of sN ;
11: calculate gradients based on L.
12: end for
13: update θ by accumulated gradients.
14: end for
15: return θ∗.

Model Supernet Pearson Coeff.
ResNet20 SPN base 0.96341

ResNet20 SPN OE OE 0.96944
ResNet20 SPN PRL OE PReLU+OE 0.97321

Table 1. The ranking correlation of sub-networks in the supernet.
“OE” represents the supernet with options enhancement.

absolute value of the Pearson correlation coefficient. We
test 50,000 sub-networks provided by the challenge with
inherited weights of the well-trained supernet. The Pear-
son correlation coefficient is calculated with a part of the
sub-networks.

3.1. Results of Candidates Enhancement

We evaluate the effectiveness of candiates enhancement
with one-stage supernet training illustrated in Algorithm 1.
The number of sub-networks sampling in each weight up-
date step is set to 8 and the initial learning rate of supernet
training is 0.01.

The experimental results are displayed in Table 1, where
“base” represents the original supernet, “OE” means the
supernet with options enhancement, “PRL OE” denotes
the supernet with both options enhancement and activation
conversion to “PReLU”. From the table, we find that the
ranking correlation of ResNet20 SPN OE outperforms
that of base supernet ResNet20 SPN by 0.006. The score
is further increased to 0.97321 after combining options en-
hancement and activation conversion, indicating the avail-
ability of candidates enhancement in our method.

3

3.2. Results of Progressive Training

The progressive training is consisting of three stages.
Firstly, we train the supernet with complete weight sharing,
where all searchable options in one layer inherit the same
weights. Afterwards, the weights are duplicated and search-
able options for each layer are divided into two sets, such as
splitting [4,8,12,16] to [4,8] and [12,16]. Finally, the num-
ber of weights in the supernet is further increased. Each
option will have an exclusive counterpart of weights. The
structures of supernet and training process are displayed in
the right part of Figure 1. The supernet training of sec-
ond stage is implemented based on the pretrained weights
of first stage with an initial learning rate of 0.001. Third
stage utilizes the same learning rate as second stage with
latest pretrained weights.

Table 2 exhibits the experimental results of progressive
training. The table demonstrates that second stage train-
ing makes a great improvement compared with the result
of stage 1 by 0.0039 in “base” supernet and 0.0033 in
“PReLU+OE” supernet. However, the training of third
stage only works in supernet “PReLU+OE” because of the
lower capacity of “base” supernet.

Model Supernet Training stage Pearson Coeff.
ResNet20 SPN base 1 0.96341
ResNet20 SPN base 2 0.96732
ResNet20 SPN base 3 0.96686

ResNet20 SPN PRL OE PReLU+OE 1 0.97321
ResNet20 SPN PRL OE PReLU+OE 2 0.97648
ResNet20 SPN PRL OE PReLU+OE 3 0.97696

Table 2. The ranking correlation of supernet in different
progressive-training stages.

3.3. Visualization of ranking correlation

We train a few sub-networks independently and get their
accuracies on validation set. Then the correlation of accu-
racies obtained with supernet and stand-alone training are
displayed in Figure 2, which visualizes the improvement of
accuraies and ranking correlation of sub-networks in the su-
pernet.

4. Conclusion
In this paper, we improve the ranking correlation of

supernet with capacity enlarging and progressive training
pipeline. Firstly, We utilize simple yet effective channel
proxies and activation conversion for candidates enhancing.
Secondly, we gradually add the counterpart of weights for
different searchable options and elaborately finetune the su-
pernet, which contributes to better convergence and ranking
consistency. Finally, the experiments demonstrate that both
candidates enhancement and progressive training improve
the ranking correlation of sub-networks in weights inherit-
ing and stand-alone training.

Figure 2. The accuracy correlation of subet-networks in different
training settings.

References
[1] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and

Song Han. Once-for-all: Train one network and specialize
it for efficient deployment. arXiv preprint arXiv:1908.09791,
2019. 1, 2, 3

[2] Bo Chen, Golnaz Ghiasi, Hanxiao Liu, Tsung-Yi Lin, Dmitry
Kalenichenko, Hartwig Adam, and Quoc V. Le. Mnasfpn:
Learning latency-aware pyramid architecture for object detec-
tion on mobile devices. In Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020. 1

[3] Xiangxiang Chu, Bo Zhang, Jixiang Li, Qingyuan Li, and
Ruijun Xu. Scarlet-nas: bridging the gap between stability
and scalability in weight-sharing neural architecture search.
arXiv preprint arXiv:1908.06022, 2019. 1

[4] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fair-
nas: Rethinking evaluation fairness of weight sharing neural
architecture search. arXiv preprint arXiv:1907.01845, 2019.
1

[5] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-
shot neural architecture search with uniform sampling. In
European Conference on Computer Vision, pages 544–560.
Springer, 2020. 1

[6] Kevin Alexander Laube and Andreas Zell. Inter-
choice dependent super-network weights. arXiv preprint
arXiv:2104.11522, 2021. 1

[7] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnasnet:
Platform-aware neural architecture search for mobile. In Con-
ference on Computer Vision and Pattern Recognition (CVPR),
pages 2820–2828, 2019. 1

[8] Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change
Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. Econas:
Finding proxies for economical neural architecture search.
In Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020. 1

4

