
Bag of Tricks for Neural Architecture Search

Thomas Elsken1, Benedikt Staffler1, Arber Zela2, Jan Hendrik Metzen1 and Frank Hutter2,1
1Bosch Center for Artificial Intelligence, 2University of Freiburg

{thomas.elsken, benediktsebastian.staffler, janhendrik.metzen}@de.bosch.com
{zelaa, fh}@cs.uni-freiburg.de

Abstract

While neural architecture search methods have been suc-
cessful in previous years and led to new state-of-the-art per-
formance on various problems, they have also been criti-
cized for being unstable, being highly sensitive with respect
to their hyperparameters, and often not performing better
than random search. To shed some light on this issue, we
discuss some practical considerations that help improve the
stability, efficiency and overall performance.

1. Introduction

Neural architecture search (NAS) methods have been
very successful in previous years and led to a new state of
the art on various problems and benchmarks, e.g., for image
classification [58, 35], semantic segmentation [26] or object
detection [17]; please refer to the surveys [14, 46] for an
overview. However, they have also been criticized for being
unstable and for providing unfair or non-transparent empir-
ical comparisons due to using various tweaks for boosting
performance beside just comparing the optimized architec-
ture, see, e.g., [25]. In particular methods employing one-
shot models have been reported to be brittle, highly sensi-
tive with respect to their hyperparameters, and often no bet-
ter than random search [24, 52, 49, 53, 54, 50]. Tricks for
stabilizing the search are often hidden in the details and are
hard to find for the reader, or are not even discussed. In this
short paper, we provide some insights in the details of using
NAS methods and discuss common practices in NAS that
help improving the stability (Section 2), efficiency (Section
3), and overall performance (Section 4).

2. Stabilizing Gradient-Based NAS and Train-
ing One-Shot Models

Weights Warm-Up. Gradient-based NAS methods typ-
ically employ a continuous relaxation of the architecture
search space by considering a weighted combination of
operations (such as convolution or pooling layers) [28].
This allows to search for architectures by using alternat-

ing stochastic gradient descent, which (in each batch) iter-
ates updates of the network parameters and the real-valued
weights parameterizing the architecture. However, directly
using this alternating optimization has been reported to lead
to premature convergence in the architectural space [26].
Consequently, a common trick [26, 38, 33, 49, 15, 17] is to
start by optimizing the network weights only, often for as
long as half of the overall search epochs; architecture up-
dates are only conducted afterwards. This trick is important
in order for the architecture search to not favour architec-
tures that train faster (in particular those that contain many
skip connections).

Similar approaches for warming up weights can be found
for sampling-based methods. Bender et al. [2] start by
training the whole one-shot model and then drop out more
and more paths over the course of training. TuNAS [3]
adapts this strategy; while they directly samples paths from
the one-shot models for training, they enable all operations
within a certain block of the one-shot model rather than only
the sampled operation. The probability for enabling all op-
erations is annealing to 0 over the course of training.

It is even a possibility to first fully train the one-shot
model and conduct the search afterwards, thus decoupling
these two stages [2, 18, 7].

Regularization and Loss Landscape Smoothing. It was
shown [53] that smoothing the loss landscape by using
stronger regularization can help to stabilize architecture
search. This can, e.g., be done via stochastic regulariza-
tion techniques, such as drop path [58], weight decay or
data augmentation. Alternatively, more robust loss func-
tions can achieve a similar goal, e.g., by minimizing the
loss in a neighbourhood of an optimal architecture rather
than only for the optimum [6] or by implicitly smoothing
the loss function via additional auxiliary connections [8].
Normalization layers. For NAS methods using a contin-
uous relaxation of the search space, such as DARTS, a naive
use of normalization layers such as batch [22], layer [1],
instance [42] or group [47] normalization, is problematic
since their learnable parameters can lead to a rescaling of
the architectural parameters and thus make them meaning-

1



less. Consequently, the learnable parameters are typically
disabled [28]. Xu et al. [49] even report that in general
batch normalization was harmful in their experiments and
hence they do not use it at all. Furthermore, batch normal-
ization can cause issues in combination with NAS methods
that require to keep the one-shot model in memory since this
naturally leads to using small batch sizes due to memory
limitations. This is especially problematic for applications
with high-resolution input images.

Some normalization layers are also fundamentally prob-
lematic in combination with sampling-based methods since
the normalization statistics will vary across different sam-
pled paths. Bender et al. [2] report that training the one-
shot models was highly unstable in early stages of exper-
imentation, and that these instabilities were overcome by
using batch statistics also during evaluation and a variant of
ghost batch normalization [19]. Many researchers also re-
place standard batch normalization by more advanced tech-
niques, e.g., [7] use synchronized batch normalization [32]
across GPUs to increase the effective batch size and recal-
culate batch statistics during architecture optimization and
[44] use group normalization [47] instead. We also refer to
[10] for a discussion of batch normalization within models
trained by sampling paths.

3. Speeding Up NAS
Proxy Tasks. A very common approach for speeding up
NAS is to use lower fidelity (or proxy) estimates. E.g., ap-
proaches using a cell-based search space typically use fewer
cells with fewer filters during search than during evalua-
tion [58] and train for fewer epochs. The size of the trainig
data set can also be reduced to make the search more effi-
cient, e.g., by downscaling images [26] or by searching on a
smaller data set (e.g., CIFAR or PennTreeBank) and trans-
ferring the learned cells to a larger one (e.g. ImageNet or
WikiText-2) as is often done in practice [58, 35, 28]. We
refer to Elsken et al. [14] for a general overview. Zhou et
al. [57] study the impact of such lower fidelity estimates and
assess how different proxies should be used in combination
to achieve the best speed up while maintaining a high cor-
relation with the true optimization metric.
Feature Caching. Recently, many researchers have ap-
plied NAS methods to tasks such as semantic segmenta-
tion [26] or object detection [49], where architectures are
composed of several components, such as a backbone and a
task-specific head. When the backbone is fixed during the
search, its outputs can be pre-computed once for all training
data points to avoid unnecessary computation and thereby
speed up architecture search [5, 31, 44].
Speeding Up The Optimization Process via Sequential
Search. Rather than optimizing different components of
an architecture jointly, the search is often split up into sev-
eral phases for different components in order to reduce

memory and time consumption. For example, in the case
of object detection, Xu et al. [49] first search for the multi-
scale feature extractor and then for the detection head. Du
et al. [13] first search for scale permutations of a given net-
work and then tune the building blocks of the resulting ar-
chitecture, e.g., by adjusting the resolution of feature maps
and by choosing one out of a set of predefined possible
building blocks, such as a residual block or a bottleneck
block. Guo et al. [17] first sequentially screen different
search spaces for different architectural components with a
downscaled model and prune the search spaces before con-
ducting a final optimization of the reduced search spaces.
Pre-Optimized Search Spaces. While in principle NAS
can be viewed as a subfield of automated machine learn-
ing (AutoML) [21] and thus aims for searching for archi-
tectures with as little prior knowledge from humans as pos-
sible, it can nevertheless be helpful to build search spaces
around architectures that are known to work well for effi-
ciency reasons, rather than searching from scratch [36]. For
example, search spaces are often based on inverted resid-
ual blocks [39], essentially resulting in optimizing the hy-
perparameters that come with these blocks, such as ker-
nel sizes, expansion ratios or dilatation rates [40, 17, 3, 4].
Some methods also directly build upon existing architec-
tures and search for transformations of these architectures,
e.g., via permuting layers [13] or by searching how to con-
nect channel groups within an architecture [33]. We note
that while this use of pre-optimized search spaces is likely
to yield improved results for a particular application more
quickly, this process cannot discover entirely new architec-
tures, such as Transformer [43] architectures. In order to
achieve the latter, one would have to use dramatically more
powerful search spaces, and potentially with a hierarchical
structure [27, 48, 37].

4. Improving the Final Performance
Deriving Optimal Architectures from the Search Pro-
cess. Identifying the optimal architectures from NAS runs
is not trivial for at least the following reasons: Firstly, as al-
most all methods employ lower fidelity estimates, the rank-
ing of architectures on the proxy tasks will likely be dif-
ferent from the ranking on the true task. Secondly, it is
currently not well understood how weight sharing affects
the ranking of architectures. Some researchers show that
weight sharing is not necessarily properly ranking architec-
tures [24, 52, 50, 54]. Consequently, researchers often first
collect a set of candidate architectures, either by running
NAS multiple times [28] or by obtaining multiple architec-
tures from a single run of the method (e.g., by sampling
from a learned distribution or by sampling from a popu-
lation of evolved networks) [58, 5]. These sets of candi-
date architectures are then evaluated in a setting which has
higher correlation with respect to the setting of interest and

2



the best out of the candidates is chosen to be the optimal
architecture. This process is sometimes also already used
within the search process when components are searched
sequentially [44]. To increase correlation between ranking
of architectures with weights inherited from the one-shot
model versus when retrained from scratch, Zhao et al. [56]
propose to use a set of sub-one-shot models, where each sub
model covers different regions of the search space, with the
goal of alleviating undesired co-adaption. Additionally, for
approaches employing a continuous relaxation of the search
space, it remains unclear what the best way is to obtain a
discretized architecture from the real-valued parameteriza-
tion. Typically, the operations with maximum weight are
chosen as initially proposed by Liu et al. [28]. Wang et al.
[45] argue that this process is suboptimal since the operation
weights are not directly correlated with performance of the
resulting architecture and thus propose a different scheme
for extracting a discretized architecture based on minimiz-
ing the drop in performance when removing an operation
from the one-shot model.

Hyperparameters, Data Augmentation and other
Tweaks for Boosting Performance. The performance of
a neural architecture depends on many factors other than the
architecture itself, such as data augmentation [11, 55, 9],
stochastic regularization [16, 58], activation functions [34]
and other hyperparameters such as learning rate (sched-
ules) [29]. Yang et al. [50] provide a thorough ablation
study on these factors on CIFAR-10. They show that the
training pipeline is more important than the architecture:
The worst out of eight randomly sampled architectures
trained with the best training pipeline substantially
outperformed the best of the eight architectures using
the worst training pipeline. To give another example,
MobileNetV3 [20] achieved 75.2% top-1 accuracy on
ImageNet, suggesting an improvement of 3.2% due to
the novel architecture compared to the performance of
72.0% for MobileNetV2 [39]. However, Bender et al. [3]
show that when both models are trained with an identical
state-of-the-art training pipeline, MobileNetV2 achieves
73.3% accuracy compared to 75.3% for MobileNetV3,
thereby reducing the improvement due to the architecture
from 3.2% to 2.0%. Thus, all these factors along with
the architecture heavily impact the final performance.
Moreover, the search hyperparameters are in particular
important for one-shot NAS methods as already discussed
above. Zela et al. [54] optimize the hyperparameters of
various one-shot NAS algorithms and show that the found
solutions can outperform black-box NAS optimizers when
properly tuned. To avoid many of these confounding factors
when comparing different NAS algorithms, a series of NAS
benchmarks [51, 54, 12, 41, 30, 23] have been proposed.

5. Conclusion
We presented a list of tips and tricks for employing NAS

methods and making them more robust in practice. We hope
that these can ease the usability of NAS methods, both for
experienced and new researchers.

References
[1] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer

normalization. arXiV, 2016. 1
[2] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasude-

van, and Quoc Le. Understanding and simplifying one-shot architec-
ture search. In ICML, 2018. 1, 2

[3] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang Cheng,
Pieter-Jan Kindermans, and Quoc V. Le. Can weight sharing outper-
form random architecture search? an investigation with tunas. In The
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020. 1, 2, 3

[4] Bo Chen, Golnaz Ghiasi, Hanxiao Liu, Tsung-Yi Lin, Dmitry
Kalenichenko, Hartwig Adam, and Quoc V. Le. Mnasfpn: Learn-
ing latency-aware pyramid architecture for object detection on mo-
bile devices. In The IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020. 2

[5] Liang-Chieh Chen, Maxwell Collins, Yukun Zhu, George Papan-
dreou, Barret Zoph, Florian Schroff, Hartwig Adam, and Jon Shlens.
Searching for efficient multi-scale architectures for dense image pre-
diction. In NeurIPS 31. 2018. 2

[6] Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable archi-
tecture search via perturbation-based regularization. In ICML, pages
1554–1565. PMLR, 2020. 1

[7] Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng, Xinyu
Xiao, and Jian Sun. Detnas: Backbone search for object detection.
In NeurIPS. 2019. 1, 2

[8] Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu, Xiaolin Wei,
and Junchi Yan. {DARTS}-: Robustly stepping out of performance
collapse without indicators. In ICLR, 2021. 1

[9] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and
Quoc V. Le. Autoaugment: Learning augmentation strategies from
data. In CVPR, June 2019. 3

[10] Zhijie Deng, Yinpeng Dong, Shifeng Zhang, and Jun Zhu. Under-
standing and exploring the network with stochastic architectures. In
NeurIPS 33. 2020. 2

[11] Terrance DeVries and Graham W. Taylor. Improved regularization
of convolutional neural networks with cutout. arXiv, 2017. 3

[12] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of
reproducible neural architecture search. In ICLR, 2020. 3

[13] Xianzhi Du, Tsung-Yi Lin, Pengchong Jin, Golnaz Ghiasi, Mingxing
Tan, Yin Cui, Quoc V. Le, and Xiaodan Song. Spinenet: Learning
scale-permuted backbone for recognition and localization. In CVPR,
June 2020. 2

[14] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural ar-
chitecture search: A survey. Journal of Machine Learning Research,
20(55):1–21, 2019. 1, 2

[15] Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, and Frank
Hutter. Meta-learning of neural architectures for few-shot learn-
ing. In The IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020. 1

[16] Xavier Gastaldi. Shake-shake regularization. In ICLR Workshop,
2017. 3

[17] Jianyuan Guo, Kai Han, Yunhe Wang, Chao Zhang, Zhaohui Yang,
Han Wu, Xinghao Chen, and Chang Xu. Hit-detector: Hierarchi-
cal trinity architecture search for object detection. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2020. 1, 2

3



[18] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu,
Yichen Wei, and Jian Sun. Single path one-shot neural architecture
search with uniform sampling. In European Conference on Computer
Vision, pages 544–560. Springer, 2020. 1

[19] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, gener-
alize better: closing the generalization gap in large batch training of
neural networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, NeurIPS
30, pages 1731–1741. Curran Associates, Inc., 2017. 2

[20] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo
Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vi-
jay Vasudevan, Quoc V. Le, and Hartwig Adam. Searching for mo-
bilenetv3. In ICCV, October 2019. 3

[21] Frank Hutter, Lars Kotthoff, and J. Vanschoren. Automated Machine
Learning: Methods, Systems, Challenges. Challenges in Machine
Learning. Springer, 2019. 2

[22] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift. In Pro-
ceedings of the 32nd International Conference on Machine Learning,
2015. 1

[23] Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao,
Haoran You, Qixuan Yu, Yue Wang, Cong Hao, and Yingyan Lin.
{HW}-{nas}-bench: Hardware-aware neural architecture search
benchmark. In ICLR, 2021. 3

[24] Liam Li and Ameet Talwalkar. Random search and reproducibility
for neural architecture search. Conference on Uncertainty in Artifi-
cial Intelligence (UAI), 2019. 1, 2

[25] Marius Lindauer and Frank Hutter. Best practices for scientific re-
search on neural architecture search. Journal of Machine Learning
Research, 21(243):1–18, 2020. 1

[26] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei
Hua, Alan L. Yuille, and Li Fei-Fei. Auto-deeplab: Hierarchical neu-
ral architecture search for semantic image segmentation. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019. 1, 2

[27] Chenchen Liu, Miao Hu, John Paul Strachan, and Hai Li. Rescuing
memristor-based neuromorphic design with high defects. In 54th
Annual Design Automation Conference (DAC), pages 1–6, 2017. 2

[28] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differ-
entiable architecture search. In ICLR, 2019. 1, 2, 3

[29] I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient descent with
warm restarts. In ICLR, 2017. 3

[30] Abhinav Mehrotra, Alberto Gil C. P. Ramos, Sourav Bhattacharya,
Łukasz Dudziak, Ravichander Vipperla, Thomas Chau, Mohamed S
Abdelfattah, Samin Ishtiaq, and Nicholas Donald Lane. {NAS}-
bench-{asr}: Reproducible neural architecture search for speech
recognition. In ICLR, 2021. 3

[31] Vladimir Nekrasov, Hao Chen, Chunhua Shen, and Ian Reid. Fast
neural architecture search of compact semantic segmentation models
via auxiliary cells. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019. 2

[32] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu Zhang,
Kai Jia, Gang Yu, and Jian Sun. Megdet: A large mini-batch object
detector. In CVPR, pages 6181–6189, 2018. 2

[33] Junran Peng, Ming Sun, ZHAO-XIANG ZHANG, Tieniu Tan, and
Junjie Yan. Efficient neural architecture transformation search in
channel-level for object detection. In NeurIPS 32. 2019. 1, 2

[34] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for
activation functions, 2018. 3

[35] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Ag-
ing Evolution for Image Classifier Architecture Search. In AAAI,
2019. 1, 2

[36] Esteban Real, Chen Liang, David R So, and Quoc V Le. Evolving
machine learning algorithms from scratch. ICML, 2020. 2

[37] Robin Ru, Pedro Esperança, and Fabio Maria Carlucci. Neural ar-
chitecture generator optimization. In H. Larochelle, M. Ranzato,

R. Hadsell, M. F. Balcan, and H. Lin, editors, NeurIPS, volume 33,
pages 12057–12069. Curran Associates, Inc., 2020. 2

[38] Tonmoy Saikia, Yassine Marrakchi, Arber Zela, Frank Hutter, and
Thomas Brox. Autodispnet: Improving disparity estimation with au-
toml. In ICCV, October 2019. 1

[39] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. MobileNetV2: Inverted residuals and linear
bottlenecks. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 2, 3

[40] Albert Shaw, Daniel Hunter, Forrest Landola, and Sammy Sidhu.
Squeezenas: Fast neural architecture search for faster semantic seg-
mentation. In ICCV Workshops, Oct 2019. 2

[41] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret
Keuper, and Frank Hutter. Nas-bench-301 and the case for sur-
rogate benchmarks for neural architecture search. arXiv preprint,
abs/2008.09777, 2020. 3

[42] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance
normalization: The missing ingredient for fast stylization. arXiv,
abs/1607.08022, 2016. 1

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Atten-
tion is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, NeurIPS,
volume 30. Curran Associates, Inc., 2017. 2

[44] Ning Wang, Yang Gao, Hao Chen, Peng Wang, Zhi Tian, Chunhua
Shen, and Yanning Zhang. Nas-fcos: Fast neural architecture search
for object detection. In The IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020. 2, 3

[45] Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang,
and Cho-Jui Hsieh. Rethinking architecture selection in differen-
tiable NAS. In ICLR, 2021. 3

[46] M. Wistuba, Ambrish Rawat, and Tejaswini Pedapati. A survey on
neural architecture search. ArXiv, abs/1905.01392, 2019. 1

[47] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of
the European Conference on Computer Vision (ECCV), September
2018. 1, 2

[48] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He.
Exploring randomly wired neural networks for image recognition. In
ICCV, October 2019. 2

[49] Hang Xu, Lewei Yao, Wei Zhang, Xiaodan Liang, and Zhenguo Li.
Auto-fpn: Automatic network architecture adaptation for object de-
tection beyond classification. In ICCV, October 2019. 1, 2

[50] Antoine Yang, Pedro M. Esperança, and Fabio M. Carlucci. Nas
evaluation is frustratingly hard. In ICLR, 2020. 1, 2, 3

[51] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin
Murphy, and Frank Hutter. Nas-bench-101: Towards reproducible
neural architecture search. In ICML, 2019. 3

[52] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and
Mathieu Salzmann. Evaluating the search phase of neural architec-
ture search. In ICLR, 2020. 1, 2

[53] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi,
Thomas Brox, and Frank Hutter. Understanding and robustifying
differentiable architecture search. In ICLR, 2020. 1

[54] Arber Zela, Julien Siems, and Frank Hutter. Nas-bench-1shot1:
Benchmarking and dissecting one-shot neural architecture search. In
ICLR, 2020. 1, 2, 3

[55] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David
Lopez-Paz. mixup: Beyond empirical risk minimization. In ICLR,
2018. 3

[56] Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo Fonseca, and
Tian Guo. Few-shot neural architecture search. arXiv, 2020. 3

[57] Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change Loy,
Shuai Yi, Xuesen Zhang, and Wanli Ouyang. Econas: Finding prox-
ies for economical neural architecture search. In CVPR, 2020. 2

[58] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le.
Learning transferable architectures for scalable image recognition.
In CVPR, 2018. 1, 2, 3

4


