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Abstract

While neural architecture search methods have been suc-
cessful in previous years and led to new state-of-the-art per-
formance on various problems, they have also been criti-
cized for being unstable, being highly sensitive with respect
to their hyperparameters, and often not performing better
than random search. To shed some light on this issue, we
discuss some practical considerations that help improve the
stability, efficiency and overall performance.

1. Introduction

Neural architecture search (NAS) methods have been
very successful in previous years and led to a new state of
the art on various problems and benchmarks, e.g., for image
classification [58, 35], semantic segmentation [26] or object
detection [17]; please refer to the surveys [14, 46] for an
overview. However, they have also been criticized for being
unstable and for providing unfair or non-transparent empir-
ical comparisons due to using various tweaks for boosting
performance beside just comparing the optimized architec-
ture, see, e.g., [25]. In particular methods employing one-
shot models have been reported to be brittle, highly sensi-
tive with respect to their hyperparameters, and often no bet-
ter than random search [24, 52, 49, 53, 54, 50]. Tricks for
stabilizing the search are often hidden in the details and are
hard to find for the reader, or are not even discussed. In this
short paper, we provide some insights in the details of using
NAS methods and discuss common practices in NAS that
help improving the stability (Section 2), efficiency (Section
3), and overall performance (Section 4).

2. Stabilizing Gradient-Based NAS and Train-
ing One-Shot Models

Weights Warm-Up. Gradient-based NAS methods typ-
ically employ a continuous relaxation of the architecture
search space by considering a weighted combination of
operations (such as convolution or pooling layers) [28].
This allows to search for architectures by using alternat-

ing stochastic gradient descent, which (in each batch) iter-
ates updates of the network parameters and the real-valued
weights parameterizing the architecture. However, directly
using this alternating optimization has been reported to lead
to premature convergence in the architectural space [26].
Consequently, a common trick [26, 38, 33, 49, 15, 17] is to
start by optimizing the network weights only, often for as
long as half of the overall search epochs; architecture up-
dates are only conducted afterwards. This trick is important
in order for the architecture search to not favour architec-
tures that train faster (in particular those that contain many
skip connections).

Similar approaches for warming up weights can be found
for sampling-based methods. Bender et al. [2] start by
training the whole one-shot model and then drop out more
and more paths over the course of training. TuNAS [3]
adapts this strategy; while they directly samples paths from
the one-shot models for training, they enable all operations
within a certain block of the one-shot model rather than only
the sampled operation. The probability for enabling all op-
erations is annealing to 0 over the course of training.

It is even a possibility to first fully train the one-shot
model and conduct the search afterwards, thus decoupling
these two stages [2, 18, 7].

Regularization and Loss Landscape Smoothing. It was
shown [53] that smoothing the loss landscape by using
stronger regularization can help to stabilize architecture
search. This can, e.g., be done via stochastic regulariza-
tion techniques, such as drop path [58], weight decay or
data augmentation. Alternatively, more robust loss func-
tions can achieve a similar goal, e.g., by minimizing the
loss in a neighbourhood of an optimal architecture rather
than only for the optimum [6] or by implicitly smoothing
the loss function via additional auxiliary connections [8].
Normalization layers. For NAS methods using a contin-
uous relaxation of the search space, such as DARTS, a naive
use of normalization layers such as batch [22], layer [1],
instance [42] or group [47] normalization, is problematic
since their learnable parameters can lead to a rescaling of
the architectural parameters and thus make them meaning-
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less. Consequently, the learnable parameters are typically
disabled [28]. Xu et al. [49] even report that in general
batch normalization was harmful in their experiments and
hence they do not use it at all. Furthermore, batch normal-
ization can cause issues in combination with NAS methods
that require to keep the one-shot model in memory since this
naturally leads to using small batch sizes due to memory
limitations. This is especially problematic for applications
with high-resolution input images.

Some normalization layers are also fundamentally prob-
lematic in combination with sampling-based methods since
the normalization statistics will vary across different sam-
pled paths. Bender et al. [2] report that training the one-
shot models was highly unstable in early stages of exper-
imentation, and that these instabilities were overcome by
using batch statistics also during evaluation and a variant of
ghost batch normalization [19]. Many researchers also re-
place standard batch normalization by more advanced tech-
niques, e.g., [7] use synchronized batch normalization [32]
across GPUs to increase the effective batch size and recal-
culate batch statistics during architecture optimization and
[44] use group normalization [47] instead. We also refer to
[10] for a discussion of batch normalization within models
trained by sampling paths.

3. Speeding Up NAS
Proxy Tasks. A very common approach for speeding up
NAS is to use lower fidelity (or proxy) estimates. E.g., ap-
proaches using a cell-based search space typically use fewer
cells with fewer filters during search than during evalua-
tion [58] and train for fewer epochs. The size of the trainig
data set can also be reduced to make the search more effi-
cient, e.g., by downscaling images [26] or by searching on a
smaller data set (e.g., CIFAR or PennTreeBank) and trans-
ferring the learned cells to a larger one (e.g. ImageNet or
WikiText-2) as is often done in practice [58, 35, 28]. We
refer to Elsken et al. [14] for a general overview. Zhou et
al. [57] study the impact of such lower fidelity estimates and
assess how different proxies should be used in combination
to achieve the best speed up while maintaining a high cor-
relation with the true optimization metric.
Feature Caching. Recently, many researchers have ap-
plied NAS methods to tasks such as semantic segmenta-
tion [26] or object detection [49], where architectures are
composed of several components, such as a backbone and a
task-specific head. When the backbone is fixed during the
search, its outputs can be pre-computed once for all training
data points to avoid unnecessary computation and thereby
speed up architecture search [5, 31, 44].
Speeding Up The Optimization Process via Sequential
Search. Rather than optimizing different components of
an architecture jointly, the search is often split up into sev-
eral phases for different components in order to reduce

memory and time consumption. For example, in the case
of object detection, Xu et al. [49] first search for the multi-
scale feature extractor and then for the detection head. Du
et al. [13] first search for scale permutations of a given net-
work and then tune the building blocks of the resulting ar-
chitecture, e.g., by adjusting the resolution of feature maps
and by choosing one out of a set of predefined possible
building blocks, such as a residual block or a bottleneck
block. Guo et al. [17] first sequentially screen different
search spaces for different architectural components with a
downscaled model and prune the search spaces before con-
ducting a final optimization of the reduced search spaces.
Pre-Optimized Search Spaces. While in principle NAS
can be viewed as a subfield of automated machine learn-
ing (AutoML) [21] and thus aims for searching for archi-
tectures with as little prior knowledge from humans as pos-
sible, it can nevertheless be helpful to build search spaces
around architectures that are known to work well for effi-
ciency reasons, rather than searching from scratch [36]. For
example, search spaces are often based on inverted resid-
ual blocks [39], essentially resulting in optimizing the hy-
perparameters that come with these blocks, such as ker-
nel sizes, expansion ratios or dilatation rates [40, 17, 3, 4].
Some methods also directly build upon existing architec-
tures and search for transformations of these architectures,
e.g., via permuting layers [13] or by searching how to con-
nect channel groups within an architecture [33]. We note
that while this use of pre-optimized search spaces is likely
to yield improved results for a particular application more
quickly, this process cannot discover entirely new architec-
tures, such as Transformer [43] architectures. In order to
achieve the latter, one would have to use dramatically more
powerful search spaces, and potentially with a hierarchical
structure [27, 48, 37].

4. Improving the Final Performance
Deriving Optimal Architectures from the Search Pro-
cess. Identifying the optimal architectures from NAS runs
is not trivial for at least the following reasons: Firstly, as al-
most all methods employ lower fidelity estimates, the rank-
ing of architectures on the proxy tasks will likely be dif-
ferent from the ranking on the true task. Secondly, it is
currently not well understood how weight sharing affects
the ranking of architectures. Some researchers show that
weight sharing is not necessarily properly ranking architec-
tures [24, 52, 50, 54]. Consequently, researchers often first
collect a set of candidate architectures, either by running
NAS multiple times [28] or by obtaining multiple architec-
tures from a single run of the method (e.g., by sampling
from a learned distribution or by sampling from a popu-
lation of evolved networks) [58, 5]. These sets of candi-
date architectures are then evaluated in a setting which has
higher correlation with respect to the setting of interest and
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the best out of the candidates is chosen to be the optimal
architecture. This process is sometimes also already used
within the search process when components are searched
sequentially [44]. To increase correlation between ranking
of architectures with weights inherited from the one-shot
model versus when retrained from scratch, Zhao et al. [56]
propose to use a set of sub-one-shot models, where each sub
model covers different regions of the search space, with the
goal of alleviating undesired co-adaption. Additionally, for
approaches employing a continuous relaxation of the search
space, it remains unclear what the best way is to obtain a
discretized architecture from the real-valued parameteriza-
tion. Typically, the operations with maximum weight are
chosen as initially proposed by Liu et al. [28]. Wang et al.
[45] argue that this process is suboptimal since the operation
weights are not directly correlated with performance of the
resulting architecture and thus propose a different scheme
for extracting a discretized architecture based on minimiz-
ing the drop in performance when removing an operation
from the one-shot model.

Hyperparameters, Data Augmentation and other
Tweaks for Boosting Performance. The performance of
a neural architecture depends on many factors other than the
architecture itself, such as data augmentation [11, 55, 9],
stochastic regularization [16, 58], activation functions [34]
and other hyperparameters such as learning rate (sched-
ules) [29]. Yang et al. [50] provide a thorough ablation
study on these factors on CIFAR-10. They show that the
training pipeline is more important than the architecture:
The worst out of eight randomly sampled architectures
trained with the best training pipeline substantially
outperformed the best of the eight architectures using
the worst training pipeline. To give another example,
MobileNetV3 [20] achieved 75.2% top-1 accuracy on
ImageNet, suggesting an improvement of 3.2% due to
the novel architecture compared to the performance of
72.0% for MobileNetV2 [39]. However, Bender et al. [3]
show that when both models are trained with an identical
state-of-the-art training pipeline, MobileNetV2 achieves
73.3% accuracy compared to 75.3% for MobileNetV3,
thereby reducing the improvement due to the architecture
from 3.2% to 2.0%. Thus, all these factors along with
the architecture heavily impact the final performance.
Moreover, the search hyperparameters are in particular
important for one-shot NAS methods as already discussed
above. Zela et al. [54] optimize the hyperparameters of
various one-shot NAS algorithms and show that the found
solutions can outperform black-box NAS optimizers when
properly tuned. To avoid many of these confounding factors
when comparing different NAS algorithms, a series of NAS
benchmarks [51, 54, 12, 41, 30, 23] have been proposed.

5. Conclusion
We presented a list of tips and tricks for employing NAS

methods and making them more robust in practice. We hope
that these can ease the usability of NAS methods, both for
experienced and new researchers.
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