
1

Abstract

Using few shot learning is an effective way to solve large

computing resources problems in NAS sub-net performance

prediction. In this study, we proposed a platform-based

framework to deal with few shot problems. We explored

useful information from between-training-set, between-

testing-set and between-16-layer information, and further

created new diverse features from original ones. By using

these useful information, we designed a network model

architecture with one simple, interpretable primary model

and two different supporting models. Results show that

RMSE of primary, supporting 1 and supporting 2 models is

0.20037, 0.2196 and 0.208, respectively. After ensembling

these diverse models, the final result is greatly improved to

be 0.17924. The platform-based framework can be further

extended by integrating more different models to achieve

better prediction precision.

1. Introduction

Neural Architecture search (NAS) is an effective way to

obtain excellent networks according to the actual hardware

conditions. It is well known that we have to consume a lot

of computing resources to evaluate the performance of the

sub-networks. Some scholars used agent tasks to predict the

performance to save computing resources, which brings the

gap between the predicted performance and the actual

performance, so scholars have been troubled in this

problem so far. Due to some correlations when using agent

tasks and non agent tasks, we can use a little non agent tasks

samples to improve the agent tasks prediction performance.

Recently, GPNAS can be used in this problem but the

performance is not perfect [1].

On the other hand, machine learning is often hampered

when the data set is small. Few-Shot Learning (FSL) is

proposed to tackle this problem but the core issue in FSL is

that the empirical risk minimizer is unreliable [2,3].

However, most of the few shot learning research focused on

deep learning or classification, and there are few solutions

to the machine learning regression problem [4].

The 2021 NAS performance prediction challenge takes

the above problems into consideration. The challenge uses

the Mobilenet-like search space, where 16 blocks are

searchable. Each block has six different operations: three

choices of kernel size and two choices of expansion rate.

There are two training sets provided: stages1 has 200

inaccurate samples and stage2 has 31 accurate ones.

Contestants need to predict performance of test set samples

according to the two training sets, that is, to solve the few

shot learning problem.

2. Problem Analysis

To solve this program, we analyzed it in detail firstly.

The main challenge is few-shot. There are only 231 training

set data in total, and even only 31 of them are accurate. It is

difficult to get good information from the provided training

sets directly. Besides, even if we utilize 231 data to train

some models, the overfitting issue is still very serious. To

dig out the potential information from provided training sets,

and to improve the overfitting issue as much as possible, we

proposed a platform-based framework. It has two main

parts: Information Exploration is to find useful information

from given data, and Network Model Architecture is

designed to reduce the overfitting issue. Both of them have

expandability to accumulate the benefit from trials. With

the platform and proper arrangement, the more experiments

we take, the better results we get. Figure 1 shows the

proposed platform-based framework and the details will be

mentioned below.

Figure 1: Proposed Platform-based Framework

2.1. Platform-based Framework

2.1.1 Information Exploration

Since there are few training samples, each of them is

precious. We try to explore useful information from the

given samples. We get information from three parts: Basic

part insists of the two provided training data sets. In the

A Platform-based Framework for the NAS Performance Prediction Challenge

Haocheng Wang1, Yuxin Shen1, Zifeng Yu, Guoming Sun, Xiaoxing Chen, Chenhan Tsai

Shanghai QXiS Company Limited.

{ericwang, evanshen, griffinyu, novasun, zenithchen, hanstsai} @qxi-smart.com

2

advanced part we explore useful information from between-

training-set, between-testing-set and between-16-layer.

Besides, we further re-generate new features from the

original 16-layer-6-choise features. By this Feature-

Creation part, the new features are much different from

original ones. This diversity brings additional benefit in

reducing overfitting, if we merge several models trained

from diverse features.

Advanced part

Between-Training-Set: Stage1+Stage2

The number of samples given in the second stage is even

smaller, only 31. It is hoped that it can be mixed with the

200 samples in the first stage to get a larger (231) sample.

We designed a mapping function to map the 200 samples in

the second stage to the first stage, and the final 231 samples

were obtained after merging. Later experiments are also

based on this expanded sample.

Between-Training-Set: Semi supervised regression

We use Coreg semi supervised learning and try to use the

unlabeled test set [7]. The method of Coreg is to evaluate

the confidence of pseudo labels, so as to provide pseudo

labels for unlabeled data.

We have designed two Gradient Boosted Regression

Trees (GBRT) with different numbers of decision trees to

cross predict the unlabeled test sets to get the pseudo labels.

When using a regressor, we can predict pseudo labels in

unlabeled samples. The reliability is evaluated by the

following formula:

𝛿𝑥𝑢 = ∑ ((𝑦𝑖 − ℎ(𝑥𝑖))
2
− (𝑦𝑖 − ℎ(𝑥𝑖))

2)

𝑥𝑖∈Ω𝑢

where Ω𝑢 is the neighbor sample set in the labeled data

set L, h is GBRT, and h’ is the new regressor after adding

xu and pseudo label 𝑦𝑢(ℎ(𝑥𝑢)) to the training set. δxu

evaluates the impact of the nearest neighbor prediction after

adding false labels in the training set. It means that adding

the pseudo label will increase the accuracy rate and the

pseudo label is more likely to be correct with the large 𝛿𝑥𝑢.

To some extent, the model will learn more different data

features from the pseudo-labels in the test set that can

facilitate feature fusion later.

Between-Set: Cross-Validation

 Divide the small samples into two groups randomly and

treat them as a new training set (larger)/validation set

(smaller). An experimental analysis of these new two

groups can get important information. Most of our

parameters (including the weight of each layer, the

proportion of each layer's influence, accDiv, …), are

derived from this method.

Between-16-Layer: Layer Weightings

Beside the between-set info, we have an idea that the

proportion of weight influence in each layer is not

necessarily the same. In this, there should be a function that

can be well expressed. Figure 2 shows various curves those

we experimented to represent it, and after calculating

RMSE with random grouping training/validation sets, the

best representative curve is -(n ^ 1.5 / 66) + 1, where n

represents the nth layer. In this sense, the prior layers are

more important than the later layers.

Figure 2: Importance Between Layers

Feature Creation

In NAS network search space, change of feature map and

interaction relationship (in the case of sufficient training)

were influenced by the order relationship between network

components. We have used local/global information

induction and position coding to create new features, which

can express the local/global information and position

information in the search space. The specific feature

creation plan is as below:

Figure 3: The process of constructing local information induction

through the mean and standard deviation of feature samples at

different positions

Global/Local Information Features

We can take the mean and standard deviation of n data at

different positions to obtain local information (n=[4,8,16],

but You can try to exhaust this value).

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

3

Position Coding and Frequency Characteristics

The sample features have position space information in

the search space. We have designed a simple position

encoding to create position features:

𝐿 =
1

𝑛
∑ cos⁡(

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑥)

𝑠𝑐𝑎𝑙𝑒
)𝑛

𝑖=1 (2-1)

where L is position code of the feature sample x, locate

is the position of the feature sample x in the search space,

scale is the scaling value, whose main purpose is to limit

the distribution of position information in the cosine

function.

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is an integer, so the position encoding in the

function distribution of cosine will not be completely

equivalent, and each case has its unique distribution. Of

course you can design a more complex form to express it.

We can know the distribution of sample features from the

position coding in the search space [2,3]. However, the

number information of samples has been discarded in

coding by the averaging operation. Thus, we have created

the frequency feature and added nonlinear factors to make

the feature more robust.

𝑅 = 𝜎(𝐹(𝑥)) (2-2)

where R is frequency characteristic processing by non-

linear method, σ is sigmoid function, and F is the frequency

of characteristic value x.

Figure 4: Samples of frequency feature construction process

Discard the original features

Convolutional Neural Network (CNN) [2, 3] has the

function to extract local features of an image. In the image

classification task, the image features are extracted by CNN,

and then the new sparse features map can be input into the

full connection layer for classification. We were inspired by

CNN and manually designed the features in a interpretable

way to replace the original features. The benefits of this

method is that we can break out of the limitations of the

original features and transform the hidden features based on

the original features. The hidden features are explicitly used

as model input to obtain a new model with lower correlation

between the original model to make the model fusion more

effectively. The experimental results show that our idea

works.

2.1.2 Network Model Architecture

Primary Model

We design an interpretable model as the primary part to

perform human-know features. Furthermore, we make it as

simple as possible. An easy model helps reduce overfitting

and let developing iteration, problem analyzing and model

improvement more efficient.

According to the competition questions, a model with a

weight of 16x6 was designed. Among them, 16 is the

number of layers, and 6 is the 6 combinations obtained by

selecting one kernel and one dilation in each layer. The

three choices of the kernel should have a descending

influence on the final result. The weights should be set to 1,

k1, k1*k2 (where k1, k2> 1.0). Similarly, the weight of

dilation can be set to 1, d1 (where d1> 1.0), and because

dilation has little effect on the final result, in the

experimental stage, we have further restricted the range of

d1 to 1.0 <d1 <1.3. In fact, [6] consists of [1*1, k1*1,

k1*k2*1, 1*d1, k1*d1, k1*k2*d1], which contains only

three variables. There are 720 kinds of arrangements in [6],

and the arrangement of each layer is not necessarily the

same.

After the weight calculation of [16] [6], the final score is

obtained. Finally, the score needs to be converted to

accuracy, and a mapping function is designed to do the

conversion. In the process of data analysis, I have done

many experiments and found that the median is more

suitable to represent the intermediate value than the average.

The mapping function is shown in figure 4.

Figure 5: Score to accuracy mapping

In the early stage of participating in the competition, due

to the model parameters and weight values, they have not

been well adjusted. Therefore, we have added

accDiv(1<=accDiv). The purpose of this parameter is to

make the predicted accuracy closer to the intermediate

value, and to have a smaller RMSE when the model is not

very accurate. In addition, as the model becomes better and

better, accDiv can be gradually reduced, and the RMSE can

be further reduced.

Supporting Model

Few shot regression is the essential part of the predictor

performance. Therefore, we chose Gradient Boosting

regression Tree (GBRT) as the base model. GBRT passes

3 2 4 6 1 2 3 5 … 2

F = 3

Frequency:

4

multiple rounds of iteration, and each round of iteration

produces a weak regressor, and each classifier is trained on

the basis of the residual of the previous round of regressor.

Supporting 1 model: trained from data generated from

Semi supervised regression (Between-testing-set).

Supporting 2 model: trained from data generated from

feature creation.

Ensemble Learning

 Combining multiple different models can improve the

final effect. We chose a primary model with strong

interpretability, plus several supporting models with as

different methods as possible, for model fusion. Among

them, we focus on primary model (ratio>=0.5), and

supporting models as a supplementary method for fusion

according to the set ratio.

There were several reasons for choosing the primary

model as the main model in the beginning. One is that we

chose a simple primary model, which is easier than a

complex model to overfit, and because of its good

interpretability, the effect is not too bad. In the auxiliary

model, we use different features (local/global, position and

frequency) as much as possible to create an auxiliary model

with a larger difference from the main model. Since the

models are more different from each other, after fusion,

good results can be achieved.

After experimentation, it was found that the ratio of

fusion was similar to our original idea. When the primary

model is selected as the main (larger ratio), there will

always be better results.

3. Experiment Results

In primary model 1 and 2, the accDiv parameters are

different (1.4, 1). The positions of the 6 weights in each

layer are fixed, and the weight values of each layer are

slightly different. In primary model 3 and 4, the accDiv

parameters are different (1.4, 1), and the positions of the

weights of each layer can be different, and RMSE is the best

case. The four primary models are all based on the same

model concept, but the detailed parameter settings are

different. After ensemble primary models with each other,

they can still be regarded as the same model. There are two

supporting models, which are based on the semi-supervised

and GBRT models mentioned earlier.

During the experiment of the competition, we have

submitted each single model to know the accuracy. From

the accuracy information of the single model, we can

determine the fusion ratio better. After fusing the selected

models, tune parameters, the corrected accuracy can be

obtained.

The following table lists some important model accuracy

and the proportion of each primary model and supporting

model.

Table1: Experimental Results

4. Conclusion and future work

For this few shot problem, we deeply explored

information from given limited data sets. By using this, we

design a network model architecture, which has one

primary model and two supporting models. The primary

model is designed to be interpretable to perform human-

know features of this contest problem, and the supporting

models utilizes diverse information explored to perform

non-human-know features. Our platform-based framework

ensembles these mutually complement models to cover as

many aspects as possible. The experiment results shows

that the RMSE of primary, supporting 1, supporting 2 and

final ensembled model is about 0.20, 0.22, 0.21 and 0.18,

respectively.

By our platform-based framework, we can further explore

more information by creating more features, and use them

to train more supporting models to improve final

performance.

References

[1] Li Z, Xi T, and Deng J. Gp-nas: Gaussian process based

neural architecture search. Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

11933-11942, 2020.

[2] Miller E G, Matsakis N E, and Viola P A. Learning from one

example through shared densities on transforms. In CVPR,

2000. 1.

[3] Fei-Fei L, Fergus R, Perona P. One-shot learning of object

categories. IEEE transactions on pattern analysis and

machine intelligence, 28(4): 594-611,2006.

[4] Wang Y, Yao Q, and Kwok J T. Generalizing from a few

examples: A survey on few-shot learning. ACM Computing

Surveys (CSUR), 53(3): 1-34, 2020.

[5] Krizhevsky A, Sutskever I, and Hinton G E. Imagenet

classification with deep convolutional neural networks.

Advances in neural information processing systems, 25:

1097-1105, 2012.

[6] Simonyan K, and Zisserman A. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[7] Zhou Z H, and Li M. Semisupervised regression with

cotraining-style algorithms. IEEE Transactions on

Knowledge and Data Engineering, 19(11): 1479-1493, 2007

QTY Ratio QTY Ratio

1 1 0 0 0.20037 Fix 6 weights position(each layer)

1 1 0 0 0.22629 Fix 6 weights position(each layer)

1 1 0 0 0.21948 6 weights position can be different(each layer)

1 1 0 0 0.21888 6 weights position can be different(each layer)

0 0 1 1 0.2196 Black box1(coreg)

0 0 1 1 0.208 Black box2(GBRT)

2 0.7 1 0.3 0.18784 Ensemble Model(primary+coreg)

4 0.76 1 0.24 0.185 Ensemble Model(primary+coreg)

4 0.608 2 0.392 0.17924 Best rmse in leadboard A (primary+coreg+GBRT)

4 0.504 2 0.496 0.18043 Last rmse in leadboard A (primary+coreg+GBRT)

Primary

Model

Supporting

Model Accuracy Remark

