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Abstract 

 

Using few shot learning is an effective way to solve large 

computing resources problems in NAS sub-net performance 

prediction. In this study, we proposed a platform-based 

framework to deal with few shot problems. We explored 

useful information from between-training-set, between-

testing-set and between-16-layer information, and further 

created new diverse features from original ones. By using 

these useful information, we designed a network model 

architecture with one simple, interpretable primary model 

and two different supporting models. Results show that 

RMSE of primary, supporting 1 and supporting 2 models is 

0.20037, 0.2196 and 0.208, respectively. After ensembling 

these diverse models, the final result is greatly improved to 

be 0.17924. The platform-based framework can be further 

extended by integrating more different models to achieve 

better prediction precision. 

1. Introduction 

Neural Architecture search (NAS) is an effective way to 

obtain excellent networks according to the actual hardware 

conditions. It is well known that we have to consume a lot 

of computing resources to evaluate the performance of the 

sub-networks. Some scholars used agent tasks to predict the 

performance to save computing resources, which brings the 

gap between the predicted performance and the actual 

performance, so scholars have been troubled in this 

problem so far. Due to some correlations when using agent 

tasks and non agent tasks, we can use a little non agent tasks 

samples to improve the agent tasks prediction performance. 

Recently, GPNAS can be used in this problem but the 

performance is not perfect [1]. 

On the other hand, machine learning is often hampered 

when the data set is small. Few-Shot Learning (FSL) is 

proposed to tackle this problem but the core issue in FSL is 

that the empirical risk minimizer is unreliable [2,3]. 

However, most of the few shot learning research focused on 

deep learning or classification, and there are few solutions 

to the machine learning regression problem [4].  

The 2021 NAS performance prediction challenge takes 

the above problems into consideration. The challenge uses 

the Mobilenet-like search space, where 16 blocks are 

searchable. Each block has six different operations: three 

choices of kernel size and two choices of expansion rate.  

There are two training sets provided: stages1 has 200 

inaccurate samples and stage2 has 31 accurate ones. 

Contestants need to predict performance of test set samples 

according to the two training sets, that is, to solve the few 

shot learning problem. 

2. Problem Analysis 

To solve this program, we analyzed it in detail firstly. 

The main challenge is few-shot. There are only 231 training 

set data in total, and even only 31 of them are accurate. It is 

difficult to get good information from the provided training 

sets directly. Besides, even if we utilize 231 data to train 

some models, the overfitting issue is still very serious. To 

dig out the potential information from provided training sets, 

and to improve the overfitting issue as much as possible, we 

proposed a platform-based framework. It has two main 

parts: Information Exploration is to find useful information 

from given data, and Network Model Architecture is 

designed to reduce the overfitting issue. Both of them have 

expandability to accumulate the benefit from trials. With 

the platform and proper arrangement, the more experiments 

we take, the better results we get. Figure 1 shows the 

proposed platform-based framework and the details will be 

mentioned below. 

 
Figure 1: Proposed Platform-based Framework 

2.1. Platform-based Framework 

2.1.1 Information Exploration 

Since there are few training samples, each of them is 

precious. We try to explore useful information from the 

given samples. We get information from three parts: Basic 

part insists of the two provided training data sets. In the 
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advanced part we explore useful information from between-

training-set, between-testing-set and between-16-layer. 

Besides, we further re-generate new features from the 

original 16-layer-6-choise features. By this Feature-

Creation part, the new features are much different from 

original ones. This diversity brings additional benefit in 

reducing overfitting, if we merge several models trained 

from diverse features. 

Advanced part 

Between-Training-Set: Stage1+Stage2 

The number of samples given in the second stage is even 

smaller, only 31. It is hoped that it can be mixed with the 

200 samples in the first stage to get a larger (231) sample. 

We designed a mapping function to map the 200 samples in 

the second stage to the first stage, and the final 231 samples 

were obtained after merging. Later experiments are also 

based on this expanded sample. 

Between-Training-Set: Semi supervised regression 

We use Coreg semi supervised learning and try to use the 

unlabeled test set [7]. The method of Coreg is to evaluate 

the confidence of pseudo labels, so as to provide pseudo 

labels for unlabeled data. 

We have designed two Gradient Boosted Regression 

Trees (GBRT) with different numbers of decision trees to 

cross predict the unlabeled test sets to get the pseudo labels. 

When using a regressor, we can predict pseudo labels in 

unlabeled samples. The reliability is evaluated by the 

following formula: 

𝛿𝑥𝑢 = ∑ ((𝑦𝑖 − ℎ(𝑥𝑖))
2
− (𝑦𝑖 − ℎ(𝑥𝑖))

2)

𝑥𝑖∈Ω𝑢

 

where Ω𝑢 is the neighbor sample set in the labeled data 

set L, h is GBRT, and h’ is the new regressor after adding 

xu and pseudo label 𝑦𝑢(ℎ(𝑥𝑢))  to the training set. δxu 

evaluates the impact of the nearest neighbor prediction after 

adding false labels in the training set. It means that adding 

the pseudo label will increase the accuracy rate and the 

pseudo label is more likely to be correct with the large 𝛿𝑥𝑢. 

To some extent, the model will learn more different data 

features from the pseudo-labels in the test set that can 

facilitate feature fusion later. 

Between-Set: Cross-Validation 

 Divide the small samples into two groups randomly and 

treat them as a new training set (larger)/validation set 

(smaller). An experimental analysis of these new two 

groups can get important information. Most of our 

parameters (including the weight of each layer, the 

proportion of each layer's influence, accDiv, …), are 

derived from this method. 

Between-16-Layer: Layer Weightings 

Beside the between-set info, we have an idea that the 

proportion of weight influence in each layer is not 

necessarily the same. In this, there should be a function that 

can be well expressed. Figure 2 shows various curves those 

we experimented to represent it, and after calculating 

RMSE with random grouping training/validation sets, the 

best representative curve is -(n ^ 1.5 / 66) + 1, where n 

represents the nth layer. In this sense, the prior layers are 

more important than the later layers. 

 

 
Figure 2: Importance Between Layers 

Feature Creation 

In NAS network search space, change of feature map and 

interaction relationship (in the case of sufficient training) 

were influenced by the order relationship between network 

components. We have used local/global information 

induction and position coding to create new features, which 

can express the local/global information and position 

information in the search space. The specific feature 

creation plan is as below:  

 
Figure 3: The process of constructing local information induction 

through the mean and standard deviation of feature samples at 

different positions 

Global/Local Information Features 

We can take the mean and standard deviation of n data at 

different positions to obtain local information (n=[4,8,16], 

but You can try to exhaust this value). 
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Position Coding and Frequency Characteristics 

The sample features have position space information in 

the search space. We have designed a simple position 

encoding to create position features: 

𝐿 =
1

𝑛
∑ cos⁡(

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖(𝑥)

𝑠𝑐𝑎𝑙𝑒
)𝑛

𝑖=1                      (2-1) 

where L is position code of the feature sample x, locate 

is the position of the feature sample x in the search space, 

scale is the scaling value, whose main purpose is to limit 

the distribution of position information in the cosine 

function. 

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is an integer, so the position encoding in the 

function distribution of cosine will not be completely 

equivalent, and each case has its unique distribution. Of 

course you can design a more complex form to express it. 

We can know the distribution of sample features from the 

position coding in the search space [2,3]. However, the 

number information of samples has been discarded in 

coding by the averaging operation. Thus, we have created 

the frequency feature and added nonlinear factors to make 

the feature more robust. 

𝑅 = 𝜎(𝐹(𝑥))                             (2-2) 

where R is frequency characteristic processing by non-

linear method, σ is sigmoid function, and F is the frequency 

of characteristic value x. 

 
Figure 4: Samples of frequency feature construction process 

Discard the original features 

Convolutional Neural Network (CNN) [2, 3] has the 

function to extract local features of an image. In the image 

classification task, the image features are extracted by CNN, 

and then the new sparse features map can be input into the 

full connection layer for classification. We were inspired by 

CNN and manually designed the features in a interpretable 

way to replace the original features. The benefits of this 

method is that we can break out of the limitations of the 

original features and transform the hidden features based on 

the original features. The hidden features are explicitly used 

as model input to obtain a new model with lower correlation 

between the original model to make the model fusion more 

effectively. The experimental results show that our idea 

works. 

2.1.2 Network Model Architecture 

Primary Model 

We design an interpretable model as the primary part to 

perform human-know features. Furthermore, we make it as 

simple as possible. An easy model helps reduce overfitting 

and let developing iteration, problem analyzing and model 

improvement more efficient. 

According to the competition questions, a model with a 

weight of 16x6 was designed. Among them, 16 is the 

number of layers, and 6 is the 6 combinations obtained by 

selecting one kernel and one dilation in each layer. The 

three choices of the kernel should have a descending 

influence on the final result. The weights should be set to 1, 

k1, k1*k2 (where k1, k2> 1.0). Similarly, the weight of 

dilation can be set to 1, d1 (where d1> 1.0), and because 

dilation has little effect on the final result, in the 

experimental stage, we have further restricted the range of 

d1 to 1.0 <d1 <1.3. In fact, [6] consists of [1*1, k1*1, 

k1*k2*1, 1*d1, k1*d1, k1*k2*d1], which contains only 

three variables. There are 720 kinds of arrangements in [6], 

and the arrangement of each layer is not necessarily the 

same. 

After the weight calculation of [16] [6], the final score is 

obtained. Finally, the score needs to be converted to 

accuracy, and a mapping function is designed to do the 

conversion. In the process of data analysis, I have done 

many experiments and found that the median is more 

suitable to represent the intermediate value than the average. 

The mapping function is shown in figure 4. 

 
Figure 5: Score to accuracy mapping 

In the early stage of participating in the competition, due 

to the model parameters and weight values, they have not 

been well adjusted. Therefore, we have added 

accDiv(1<=accDiv). The purpose of this parameter is to 

make the predicted accuracy closer to the intermediate 

value, and to have a smaller RMSE when the model is not 

very accurate. In addition, as the model becomes better and 

better, accDiv can be gradually reduced, and the RMSE can 

be further reduced. 

Supporting Model 

Few shot regression is the essential part of the predictor 

performance. Therefore, we chose Gradient Boosting 

regression Tree (GBRT) as the base model. GBRT passes 
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multiple rounds of iteration, and each round of iteration 

produces a weak regressor, and each classifier is trained on 

the basis of the residual of the previous round of regressor. 

Supporting 1 model: trained from data generated from 

Semi supervised regression (Between-testing-set). 

Supporting 2 model: trained from data generated from 

feature creation. 

Ensemble Learning 

 Combining multiple different models can improve the 

final effect. We chose a primary model with strong 

interpretability, plus several supporting models with as 

different methods as possible, for model fusion. Among 

them, we focus on primary model (ratio>=0.5), and 

supporting models as a supplementary method for fusion 

according to the set ratio. 

There were several reasons for choosing the primary 

model as the main model in the beginning. One is that we 

chose a simple primary model, which is easier than a 

complex model to overfit, and because of its good 

interpretability, the effect is not too bad. In the auxiliary 

model, we use different features (local/global, position and 

frequency) as much as possible to create an auxiliary model 

with a larger difference from the main model. Since the 

models are more different from each other, after fusion, 

good results can be achieved. 

After experimentation, it was found that the ratio of 

fusion was similar to our original idea. When the primary 

model is selected as the main (larger ratio), there will 

always be better results. 

3. Experiment Results 

In primary model 1 and 2, the accDiv parameters are 

different (1.4, 1). The positions of the 6 weights in each 

layer are fixed, and the weight values of each layer are 

slightly different. In primary model 3 and 4, the accDiv 

parameters are different (1.4, 1), and the positions of the 

weights of each layer can be different, and RMSE is the best 

case. The four primary models are all based on the same 

model concept, but the detailed parameter settings are 

different. After ensemble primary models with each other, 

they can still be regarded as the same model. There are two 

supporting models, which are based on the semi-supervised 

and GBRT models mentioned earlier. 

During the experiment of the competition, we have 

submitted each single model to know the accuracy. From 

the accuracy information of the single model, we can 

determine the fusion ratio better. After fusing the selected 

models, tune parameters, the corrected accuracy can be 

obtained. 

The following table lists some important model accuracy 

and the proportion of each primary model and supporting 

model. 

 

Table1: Experimental Results 

 

4. Conclusion and future work 

For this few shot problem, we deeply explored 

information from given limited data sets. By using this, we 

design a network model architecture, which has one 

primary model and two supporting models. The primary 

model is designed to be interpretable to perform human-

know features of this contest problem, and the supporting 

models utilizes diverse information explored to perform 

non-human-know features. Our platform-based framework 

ensembles these mutually complement models to cover as 

many aspects as possible. The experiment results shows 

that the RMSE of primary, supporting 1, supporting 2 and 

final ensembled model is about 0.20, 0.22, 0.21 and 0.18, 

respectively. 

By our platform-based framework, we can further explore 

more information by creating more features, and use them 

to train more supporting models to improve final 

performance. 
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QTY Ratio QTY Ratio

1 1 0 0 0.20037 Fix 6 weights position(each layer)

1 1 0 0 0.22629 Fix 6 weights position(each layer)

1 1 0 0 0.21948 6 weights position can be different(each layer)

1 1 0 0 0.21888 6 weights position can be different(each layer)

0 0 1 1 0.2196 Black box1(coreg)

0 0 1 1 0.208 Black box2(GBRT)

2 0.7 1 0.3 0.18784 Ensemble Model(primary+coreg)

4 0.76 1 0.24 0.185 Ensemble Model(primary+coreg)

4 0.608 2 0.392 0.17924 Best rmse in leadboard A (primary+coreg+GBRT)

4 0.504 2 0.496 0.18043 Last rmse in leadboard A (primary+coreg+GBRT)

Primary

Model

Supporting

Model Accuracy Remark


